
TrustScript: Language Support for
Partitioning Trusted Web Applications

David Goltzsche

TU Braunschweig, Germany

goltzsche@ibr.cs.tu-bs.de

Tim Siebels

TU Braunschweig, Germany

siebels@ibr.cs.tu-bs.de

Rüdiger Kapitza

TU Braunschweig, Germany

rrkapitz@ibr.cs.tu-bs.de

ABSTRACT

JavaScript is ubiquitous for client-side computing in web applica-

tions. However, application providers cannot trust the client and

therefore need to verify or recompute the client’s computations.

TrustJS enables trustworthy computation on untrusted clients

using JavaScript. Employing TrustJS, the service provider is able

to offload computation to its clients in trusted fashion, paving

the way for lower infrastructure costs. This is achieved by exe-

cuting JavaScript inside a trusted execution environment (TEE).

However, the development approach of TrustJS is error-prone and

time-consuming, as partitioning of JavaScript code is necessary.

Furthermore, no development tools such as linters are available.

We present TrustScript, a programming language that extends

TypeScript. TrustScript offers language support for partitioning

an application into trusted and untrusted parts, as well as various

diagnostics that help the developer to detect errors at compile

time. Our compiler translates TrustScript to JavaScript, emitting

different files for trusted and untrusted parts of the application.

1 TRUSTJS

TrustJS [2] is a browser add-on using theWebExtensions API which
enables execution of JavaScript inside an Intel SGX enclave. The

web-application developer needs to provide a partitioned applica-

tion by writing separate JavaScript files for trusted and untrusted

code These files are marked in HTML as trusted or untrusted.

In order for TrustJS to expose certain functions to the untrusted

side, the trusted script must contain a special comment at the start of

the file indicating these functions. For these functions, a proxy with

the same name is injected into the untrusted side, which invokes the

trusted function inside an enclave and returns a Promise containing
the function’s return value.

2 TRUSTSCRIPT

We add one keyword to the TypeScript [1] language, which can be

prepended to a namespace declaration: trusted. This allows parti-
tioning an application into a trusted and untrusted side containing

arbitrary TypeScript code. Furthermore, the existing TypeScript

keyword export for making an element accessible outside of the

namespace is analogous to exposing a trusted function and therefore
is used for this purpose.

Figure 1 shows valid TrustScript code containing a counter
function in the trusted side. That function is exposed to the un-

trusted side, increasing a variable that is not accessible outside of

the trusted namespace on every invocation. When called from the

trusted side, it simply returns a number. When called from the un-

trusted side, as shown in the function printCounter, it returns a
Promise containing a number. The printCounter function makes

trusted namespace inside {
let count = 0;
export function counter(): number {

return ++count;
}

}
async function printCounter() {

console.log("Counter: " +
(await inside.counter())

);
}

Figure 1: Trusted counter in TrustScript.

use of async/await to wait until the Promise is resolved and use

the resolved value.

The TrustScript compiler emits code from trusted namespaces

into a designated file (or multiple files depending on configuration)

that can be later encrypted or signed and needs to be marked as

trusted in the HTML. Code that does not reside in a trusted names-

pace will be compiled into different files which will be executed in

the untrusted part of the application.

Diagnostics. The trusted side does not have the same capabil-

ities as the untrusted side. To help the developer detect mistakes

in the code as early as possible, we implement various diagnostics.

For instance, the trusted side does not have access to the Document

Object Model (DOM) and cannot access elements defined in the

untrusted part of the application. Furthermore, it is invalid to define

an untrusted namespace nested into a trusted namespace or export

elements other than functions and interfaces from a trusted names-

pace. We issue an error during compilation if the code contains

these cases.

When calling into the trusted side, the trusted part runs inside a

different runtime environment. Therefore, arguments and return

values need to be serializable using JSON. Whenever the developer

uses a type that is not serializable, we issue an error. When a type

that is any or contains any is used, we issue a warning during

compilation.

REFERENCES

[1] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding type-

script. In European Conference on Object-Oriented Programming. Springer, 257–281.
[2] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck, Peter Pietzuch,

and Rüdiger Kapitza. 2017. TrustJS: Trusted Client-side Execution of JavaScript.

In Proceedings of the 10th European Workshop on Systems Security. ACM, 7.


