
Evaluating RISC-V Instructions Natively with Narvie
Harry Sarson∗, Ryan Voo†, and Phillip Stanley-Marbell

University of Cambridge

Developing systems software for new hardware architec-
tures is challenging. Developing low-level embedded system
firmware or low-level operating system software while evolv-
ing a processor architecture is harder still. Narvie is a read
eval print loop (REPL) that runs on a host PC and provides
an interactive interface to an open-source RISC-V (RV32I)
processor design running in an FPGA. Narvie allows operat-
ing systems researchers and hardware architects to interact
with a RISC-V processor implementation running in an iCE40
low-power low-pincount FPGA. Whilst RISC-V is gaining
popularity, the tools available to work with the instruction set
architecture (ISA) are often tailored to advanced users. When
teaching computer architecture and low-level software, it can
be a struggle to adapt powerful but complicated toolchains
to the needs of students. Narvie exposes the RISC-V ISA in
a very basic form and demonstrates in a concrete way what
individual instructions do. By allowing evaluation of indi-
vidual instructions, Narvie will help programmers gain an
understanding of the ISA. Narvie will soon be released under
a GPL licence at github.com/physical-computation/narvie.

1. What Does Narvie Do?
Running on a host computer, Narvie’s user interface allows
a user to enter assembly mnemonics via a terminal. Narvie
converts these inputs into binary RISC-V instructions. Narvie
sends the generated binary over a serial port to the FPGA as
well as displaying it to the user. On the FPGA, a modified
RV32I processor runs instructions received over the UART.
When not executing an instruction, the processor’s clock is
held high. Then, once an instruction is received, that instruc-
tion is sent to the processor and the processor clock is made
to complete one cycle. The processor has a five-stage pipeline
and thus four more cycles are required to fully execute the in-
struction. By cycling the clock four more times whilst sending
no-op instructions to the processor, the instruction is passed
through the entire pipeline. Once the instruction is retired, all
the registers are read and transmitted back to the host com-
puter. Once it has read the 32 register values, Narvie displays
them to the user. Narvie supports all instructions in the base
RISC-V integer instruction set (47 instructions in total) and
all corresponding pseudo instructions — except those that
assemble into multiple instructions [2].

2. How does Narvie Perform?
The vast majority of the time taken for Narvie to evaluate an
instruction is spent receiving the instruction and transmitting
the registers. Table 1 summarises the duration of the three
stages in both clock cycles and seconds whilst Figure 1 shows
the distribution of measured latencies. Figure 1 shows that the

∗M.Eng. student, will be presenting.
†M.Eng. student.

Task Cycles Time (ms) Fraction (%)
Receive Instruction 2048 0.339 3.1
Evaluate Instruction 5 0.000833 0.01
Transmit Registers 64294 10.7 96.9
Total 66347 11.1 100

Table 1: RTL simulation cycle counts with a UART baud rate of
115200 bits/s. Timings are estimated given a clock frequency
of 6MHz. The evaluation time is dominated by I/O overhead.

20 40 60
0

50

100

150

RV32I: 2322

UART: 106Narvie: 275

Spare: 2577

Logic Cell Allocation

Figure 1: Left: Histogram showing the instruction evaluation
time as measured by the user interface. Right: FGPA re-
sources used for the processor, UART, Narvie and those that
are spare. The resources Narvie requires are minimal.

FPGA resources required for Narvie and for the UART are
small compared to those needed by the processor.

3. Why is Narvie Needed?
Whilst programs like rappel (Linux) and WinREPL (Windows)
evaluate individual x86 instructions, no such program for
RISC-V instructions currently exists. As all current assembly
REPLs evaluate instructions natively, they can only support
the system they are running on.

Computers running RISC-V are not widely available and
so this project integrates custom hardware supporting RISC-V
with software designed to run on a desktop computer. Pro-
grammers could use GNU binutils to work with RISC-V in-
structions, provided the version is greater than 2.28 [1]. How-
ever, these tools are too new to be released as part of package
managers for stable Linux distributions and installing and
building binutils is not a simple task. Furthermore, binutils
is not straight-forward to use and available documentation is
unfortunately quite sparse.

The software required for Narvie is simpler to run and
clearly shows the relationship between RISC-V assembly and
machine code.

References
[1] Free Software Foundation. Binutils changelog, 2017.
[2] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic. The risc-v instruc-

tion set manual, volume i: User-level isa, version 2.0. Technical report,
EECS Department, University of California, Berkeley, 2014.

https://github.com/physical-computation/narvie
https://github.com/yrp604/rappel
https://github.com/zerosum0x0/WinREPL
https://www.gnu.org/software/binutils/

