
The Associative File System: First Class File Relationships

Tony Mason (PhD Student)

The University of British Columbia

fsgeek@cs.ubc.ca

Margo Seltzer

The University of British Columbia

mseltzer@cs.ubc.ca

Abstract
File systems have evolved tremendously over the past six

decades. However, the storage management of file systems

has evolved but not the name space.

The hierarchical file system name space was proposed as

part of Multics in 1965 and is fundamentally what is used

today. However, storage capacity has exploded. The vast

majority of this is stored in general purpose file systems.

The namespace’s lack of evolutionmakes that data difficult

to access. The systems community has failed to expand the

capabilities of file systems to enable the development of

viable alternatives to an ever-growing pool of files.

Focusing on file relationships permits us to enhance the

system by exploiting those relationships to create commu-

nities of interest much like social networks do. I realize this

by constructing a graph file system as an alternative to the

traditional hierarchical file system.

1 INTRODUCTION
The hierarchical model was introduced in Multics [1, 2]. At

the same time they introduced links, a tacit admission of the

model’s weakness.

Almost all systems that followed Multics adopted the hi-

erarchical namespace, e.g., AT&T [4] and Digital [5]. Early

UNIX work also suggests model limitations; they describe

the importance of the permuted index server. [4].
Since then, storage capacity has exploded — we expect to

have 163 zettabytes (ZB) of data in 2025 [3] — but the hierar-

chical name space has not evolved. This has led to numerous

“work-arounds”, including vast collections of similarly named

files, limiting directory sizes, hard links, and soft links to en-

hance findability, as well as building specialized applications

to capture cross-file relationships, treating the hierarchical

file system as an ill-designed key-value store.

To address this we propose file system that supports re-

lationships as a fundamental feature. We already manage a

tiny set of relationships, e.g., the contains relationship. This
evolves the namespace from a tree to a graph.

2 ASSOCIATIVE FILE SYSTEM
Other approaches other than a new file system and do not

address our specific concerns. Thus, we propose the devel-

opment of the associative file system. It will provide support

for an extensible set of relationships. While we will be using

some ideas from graph databases, we will adhere to the view

that a file system is a general mechanism for storing arbi-

trary files but extend it to also support the ability to store

additional relationships.

Relationships are between two files and are either uni-

directional or bi-directional. Examples include: similar —

similarity between two files, precedes and succeeds for ver-
sioning, and contains for the classic directory.
In addition to basic file system functions such as create,

the new file system will also support operations to manage

the relationships and labels that are part of my model, such

as relate, set, and label.
This model is simple, yet powerful. It enables versioning,

provenance, and application specfic relationships. Further,

we can create clusters of related files by querying for all

vertices having a specific relationship.

Relationships can be created from a variety of sources, in-

cluding the system, tools that extract meta-data, applications,

users, and operating system extensions.

3 CONCLUSION
The associative file system is my attempt to address these

concerns in a novel way. While prior work in this area has

looked at adapting databases to the problem, we choose to

ask how to evolve the file system to support relationships. By

elevating arbitrary and generalized relationships as first class

file system elements, we can provide a better user experience.

Some will avoid this work, because it touches upon the

unpredictable and messy area of human users. However, it is

time to realize that our systems are no longer our personal

playground, but a critical service to humanity.

REFERENCES
[1] Corbató, F. J., and Vyssotsky, V. A. Introduction and overview of the

multics system. In Proceedings of the November 30–December 1, 1965,
fall joint computer conference, part I (1965), ACM, pp. 185–196.

[2] Daley, R., and Neumann, P. A general-purpose file system for sec-

ondary storage. In Proceedings of the November 30–December 1, 1965,
fall joint computer conference, part I (1965), ACM, pp. 213–229.

[3] Reinsel, D., Gantz, J., and Rydning, J. Data age 2025: The digitization

of the world from edge to core. Tech. rep., Seagate, November 2018.

(accessed January 6, 2019).

[4] Ritchie, D. M., and Thompson, K. The unix time-sharing system. In

ACM SIGOPS Operating Systems Review (1973), vol. 7, ACM, p. 27.

[5] Spier, M. J., Hastings, T. N., and Cutler, D. N. An experimental

implementation of the kernel/domain architecture. In Proceedings of
the Fourth ACM Symposium on Operating System Principles (New York,

NY, USA, 1973), SOSP ’73, ACM, pp. 8–21.


