
No DNN Left Behind: Improving Inference in the
Cloud with Multi-Tenancy

Amit Samanta1,2, Suhas Shrinivasan1,2, Antoine Kaufmann2, Jonathan Mace2
1 Student Author 2 Attending Conference

Max Planck Institute for Software Systems

MOTIVATION
With the rise of machine learning, inference on deep neural
networks (DNNs) has become a core building block on the
critical path formany cloud applications. Inference, in contrast
to training, is a low-latency online task that makes predictions
on-demand using a trainedDNN. In the cloud, inference work-
loads bear similarity to other online applications like databases,
web services, and microservices. DNNs are typically hosted
separately from application logic, and accessed via RPC. We
identify a few desirable properties for inference: low latency,
high elasticity, and cost-effectiveness.
With these desirable properties in mind, we find that ex-

isting approaches to deploying DNNs for inference fall sig-
nificantly short. The conventional approach, based on pro-
visioning containers or virtual machines, suffers from over-
provisioning, slow auto-scaling, high cold-start latencies, and
mismatched pricing abstractions. This forces users to com-
promise on consistent latency, elasticity, or cost-efficiency, de-
pending on workload characteristics.
Multi-Tenancy: In this work, we propose to elevate DNN in-
ference to be a first class cloud primitive provided by a shared
multi-tenant system, akin to cloud storage anddatabases.Multi-
tenant systems are only justifiable for core datacenter func-
tionality, where there is a common need for the functionality
across many different tenants and workloads. We believe that
DNN inference is sufficiently important to justify a specialized
multi-tenant system.
With this approach, users no longer provision per-workload

resources. Instead, the system operator provisions resources for
the system as a whole, and runs long-lived system processes that
receive and execute requests from different tenants concurrently.

SYSTEMOVERVIEW
Our system architecture is similar to existing systems such as
shared filesystems and databases.Meta-operations are handled
by a logically centralized controller. DNN inference is handled
by worker processess spread across many machines.

The lifecycle from a user’s perspective is to (1) upload a
trained DNN to the system, then (2) send inference requests.
The systemperforms inferencewhen requests are received, and
transparently scales based on the workload demand. Internally,
the system distributes models to one or more workers. Infer-
ence requests are routed to whichever workers host the model.

Workers host models from many tenants simultaneously, and
multiplex execution across different models.
Key Challenges and Opportunities:
Security Shared systems execute requests of different tenants
within the same, shared processes. Thus, users are no longer
separated by rigid OS or VM boundaries. Hence, we must
ensure security between different tenants’ workloads.
Performance Isolation Thesystemmust prevent performance
interference between different tenants. However, shared sys-
tems cannot rely on OS mechanisms for isolation between
tenants, instead must address isolation at application level.
Optimization-BasedScheduling WeexploitDNNpredictabil-
ity to do a much better job of request scheduling, both at re-
quest admission, and at finer granularity within the system.
Instead of heuristic-based best-effort scheduling, we can confi-
dently optimize an objective across all pending requests, such
as minimizing average execution latency.
Multi-Resource Scheduling Worker processes host many
models simultaneously, and alternate service between different
tenants. In the worst case, each request may require loading
and executing a model that isn’t currently loaded. This intro-
duces additional resource costs, such as the need to copy a
model from a remote machine or cold storage. Similarly, if
we use hardware accelerators, then models need to be copied
from host memory to device memory. As discussed, execution
latency for DNNs is inherently predictable. However, so too
is transfer latency, since memory footprint of a DNN is fixed
and known a priori. This leads to a multi-resource scheduling
problem, has some unique constraints: (1) each resource is
individually predictable; (2) resources are consumed one-at-a-
time; and (3) scheduling decisions can be interposed before
each resource. This provides an opportunity for high quality,
fine-grained scheduling decisions.
MemoryManagement Not all inference requests incur mem-
ory transfer overheads because of caching. The memory foot-
print of a DNN is in the tens/hundreds of MBs; in contrast,
today’s web servers often exceed 1TB of main memory, present
GPUs have up to 32GB device memory, and present TPUs
have 64GB device memory. It is much more efficient to swap
between cached models than to reload from scratch.

1


